Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations

نویسندگان

  • Mohammed El-Beltagy
  • Prasanth B. Nair
  • Andy J. Keane
چکیده

It is often the case in many problems in science and engineering that the analysis codes used are computationally very expensive. This can pose a serious impediment to the successful application of evolutionary optimization techniques. Metamodeling techniques present an enabling methodology for reducing the computational cost of such optimization problems. We present here a general framework for coupling metamodeling techniques with evolutionary algorithms to reduce the computational burden of solving this class of optimization problems. This framework aims to balance the concerns of optimization with that of design of experiments. Experiments on test problems and a practical engineering design problem serve to illustrate our arguments. The practical limitations of this approach are also outlined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD

A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...

متن کامل

Biogeography-based optimization of a variable camshaft timing system

Automotive system optimization problems are difficult to solve with traditional optimization techniques because the optimization problems are complex, and the simulations are computationally expensive. These two characteristics motivate the use of evolutionary algorithms and meta-modeling techniques respectively. In this work, we apply biogeography-based optimization (BBO) to radial basis funct...

متن کامل

Surrogate-assisted evolutionary computation: Recent advances and future challenges

Surrogate-assisted, or meta-model based evolutionary computation uses efficient computational models, often known as surrogates or meta-models, for approximating the fitness function in evolutionary algorithms. Research on surrogate-assisted evolutionary computation began over a decade ago and has received considerably increasing interest in recent years. Very interestingly, surrogate-assisted ...

متن کامل

The Use of Metamodeling Techniques for Optimization under Uncertainty

ABSTRACT Metamodeling techniques have been widely used in engineering design to improve the efficiency in simulation and optimization of design systems that involve computationally expensive simulation programs. Many existing applications are restricted to deterministic optimization. Very few studies have been conducted on studying the accuracy of using metamodels for optimization under uncerta...

متن کامل

A Study on Metamodeling Techniques, Ensembles, and Multi-Surrogates in Surrogate-Assisted Memetic Algorithms

Surrogate-Assisted Memetic Algorithm(SAMA) is a hybrid evolutionary algorithm, particularly a memetic algorithm that employs surrogate models in the optimization search. Since most of the objective function evaluations in SAMA are approximated, the search performance of SAMA is likely to be affected by the characteristics of the models used. In this paper, we study the search performance of usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999